Állapotfüggő Karbantartás
Műszaki Diagnosztika I.

Rezgésdiagnosztika
Dr. Nagy István

2006.
Műszaki Diagnosztika
ISBN 963 06 0806 5
Műszaki Diagnosztika I.
ISBN 963 06 0807 3

Copyright © Delta-3N Kft.
Minden jog fenntartva. A könyv másolása egészében, vagy részleteiben jogszabásban, törvény által büntetendő cselekmény. A jogtulajdonos írásos engedélye nélkül tilos másolni, sokszorosítani, reprodukálni bármilyen eszközzel, másolatát bármilyen adathordozón ide értve az elektronikus adattároló eszközöket is.

Kiadó: Delta-3N Kft.
7030 Paks, Jedlik Á. u. 2.
http://www.delta3n.hu

Kiadásért felelős: Dr. Nagy István
Tel.: 06-75 / 510-115
Fax: 06-75 / 510114
ügyvezető-igazgató
drnagyi@delta3n.hu

Nyomai előkészítés: Plézer Mátyás

Borító terv: Plézer Mátyás

Nyomda: Pauker Nyomda
Tartalom

Előszó .. 9

A szerzőről ... 10

1. Bevezetés ... 11

2. Karbantartási stratégiák .. 13
 Üzemelés meghibásodásig ... 13
 Tervszerű megelőző karbantartás ... 13
 Állapotfüggő karbantartás .. 15
 Megelőző karbantartás ... 16
 Kockázat alapú karbantartás ... 18

3. Rezgéstan alapjai .. 20
 Mi a rezgés ... 20
 Alapfogalmak ... 21
 A rezgés vektoros ábrázolása ... 28

4. Mechanikai rezgés .. 31
 Egyszabadságfokú harmonikus rezgés ... 31
 Harmonikus rezgések összege, lebegés .. 35
 Harmonikus rezgés csillapítással ... 36
 Kényszerrezgés csillapítás nélkül ... 41
 Kényszerrezgés csillapítással ... 43
 Kettő- és több szabadságfokú rezgés ... 46
 Kétszabadságfokú tömeg-rugó rendszer szabad harmonikus mozgása . 47
 Két összekapcsolt inga viselkedése ... 51
 A kétszabadságfokú rendszerek szabad mozgásának általános leírása . 54
 Kétszabadságfokú rendszer gerjesztett harmonikus mozgása 55

5. A rezgésvizsgálat néhány alapfogalma .. 57
 A rezgés additivitása, összetett rezgés ... 57
 Rezgés amplitúdó és frekvencia skálák ... 58
 Fázis ... 64
 Idő- és frekvencia tartomány, Fourier transzformáció 66

6. Rezgésjelek mérése és feldolgozása ... 67
 Érzékelők ... 67
 Elmozdulás érzékelők ... 67
 Sebesség érzékelők .. 68
 Rezgésgyorsulás érzékelők ... 69
 Analóg-digitális jelátalakítás .. 72

Analóg-digitális jelátalakítás .. 72
7. Rezgésvizsgálat néhány módszere

Időjelek vizsgálata..104
 Időszínkron mintavételezés..106
 Crest Factor...108
Kényszerrezgések vizsgálata...109
Sajátfrekvenciás rezgések, rezonancia jelenségek..110
Teljesítménysűrűség spektrum..114
Cepstrum analízis..114
Demodulált spektrum..118
Amplitúdó moduláció a gépállapot diagnosztikában..119
Root Cause Failure Analysis (RCFA)...123
Fázis vizsgálatok..124
 Gépek rezgesszintjének mérése, szabvány-előírások.................................125
 A frekvencia analízis White-féle szabályai..126

8. Rendszerek, szerkezetek dinamikai vizsgálata..130

 Parseval teorémája..130
 Autókorreláció függvény..131
 Weiner-Hincsin tétel...132
 Rendszer analízis..132
 Súly- és átviteli függvény...133
 Teljesítmény átviteli függvény..134
 Keresztkorreláció- és kereszt-teljesítménysűrűség függvény.....................134
 Koherencia...136
 Lineáris és nem-lineáris rendszerek..136

 Szerkezetek dinamikai vizsgálata...138
 ODS Üzemi rezgésalak vizsgálat..139
 Modálanalízis alapjai...140
 Mobilitás mérések..142
 Kisérleti modálanalízis..147
9. Gépek rezgésvizsgálata a gyakorlatban .. 155
 Mérőpontok elhelyezése .. 156
 Egyirányú- és triaxiális érzékelők .. 157
 Érzékelő orientáció .. 157
 Mérési körülmények .. 158
 Rezgésfelügyelet .. 159
 Mérési ciklusidők .. 160
 Spektrumok összehasonlítása, normalizáció 161
 Referencia spektrum .. 162
 Spektrum maszk .. 163
 Trendelemzés .. 164
 Gerjesztési frekvenciák ... 165
 Rezgésspektrumok kiértékelése .. 167
 Rezgéselemzeshez szükséges gépadatok 167
 Adat validitás .. 168
 A spektrumelemzés lépései .. 170

10. Gépállapot diagnosztika ... 172
 Mechanikai hibák .. 173
 Kiegyensúlyozatlanság ... 173
 Statikus kiegyensúlyozatlanság ... 174
 Dinamikus kiegyensúlyozatlanság .. 175
 Összetett kiegyensúlyozatlanság ... 176
 Egyoldalt csapágyazott forgórész kiegyensúlyozatlansága 176
 Kiegyensúlyozatlanság vertikális gépek esetén 177
 Excentrikus forgórész ... 178
 Tengely beállítási hiba ... 178
 Párhuzamos tengely beállítási hiba ... 179
 Szögbeli tengely beállítási hiba ... 180
 Összetett tengely beállítási hiba .. 181
 Hőmérséklet hatása a tengelybeállításra 182
 Görbült tengely ... 182
 Tengely beállítási hiba és a görbült tengely megkülönböztetése 183
 Ferdén beépített csapágy ... 183
 Kuplunghibák .. 185
 Siklócsapágyas gépek diagnosztikája .. 186
 Olajörvénylés, olajfilm instabilitás (whirl) és olajütés (whip) 188
 a siklócsapágyakban ... 188
 Siklócsapágy lazulás, hégazprobléma 189
 Siklócsapágy kenési hiányosságok, surlódás 191
 Siklócsapágyas gépek támcsapágy kopása 192
 Siklócsapágyas gépek tengely beállítási hibája 192
 Gördülőelemes csapágyak hibái .. 194
 Gördülőelemes csapágy kopása, lazulása 202
Mechanikai lazulás .. 202
 Forgórész belső megfogásának lazulása .. 203
 Strukturális lazulás .. 204
 Talpcsapágy lazulás ... 205
Rezonancia Jelenségek .. 205
 Gépek rezonancia problémája ... 206
 Külső gerjesztés .. 207
Forgórész tengelyrepedés, tengelytörés .. 218
Villamos eredetű hibák .. 211
 AC motorok .. 211
 Zárlatos vasmag ... 213
 Laza áramszedők, fázis-probléma ... 213
 Forgórész deformációja hő hatására ... 214
 Légrés excentrikusság, laza forgórész .. 214
 Laza forgórész rudak .. 215
 Görbült, vagy törött forgórész rúd .. 216
 Rotor rúd monitorozás motoráram analízissel .. 217
 Excentrikus forgórész .. 218
 Állórész ovalítása, excentricitása ... 218
 Állórész tekercsszám frekvencia .. 219
 Laza állórész tekercselés .. 220
 Motor puhaláb ... 220
 DC motorok vizsgálata .. 221
Áramlási kellett regezés .. 222
 Centrifugális szivattyúk, ventillátorok vizsgálata 222
 Kavitáció centrifugális szivattyúkban .. 224
 Áramlási turbulencia .. 225
 Turbina diagnosztika ... 227
 Fogaskerekes szivattyúk diagnosztikája .. 228
 Csavarszivattyúk felügyelete .. 228
 Axiális átfolyású ventillátorok ... 228
 Centrifugális ventillátorok ... 229
 Centrifugális kompresszorok ... 229
Szíj- és lánchatlansú gépek vizsgálata ... 230
 Rosszul illesztett, kopott, vagy megnyúlt szíj, láncc 230
 Excentrikus tárcsa, tárcsaütés ... 231
 Szíj, vagy láncc beállításihiba .. 232
 Szíj, láncc rezonancia, vagy ütés ... 233
Hajtóművek rezgésfelügyelete .. 234
 Fogaskerék áttétel .. 234
 Fogaskerék kopás ... 235
 Fogaskerék túlterhelés .. 236
 Fogaskerék foghézag, túl nagy holtjáték ... 237
Tartalom

Sérült, repedt, vagy törött fog ... 238
Excentrikus fogaskerék, vagy görbült tengely 239
Tarokkírozó hajtómű fogak ... 239
Fogaskerekek tengely bellítási hibával ... 240
Bolygó hajtómű .. 241
Fogaskerék szellemfrekvencia ... 243
Fogszámok közös osztóval ... 243
Dugattyús gépek rezgésvizsgálata ... 243
 Dugattyús kompresszorok, robbanó- és diesel motorok............... 243
12. Irodalomjegyzék .. 245
11. Név és tárgymutató ... 249
Köszönetnyilvánítás

Nagy hálával gondolok vissza Dr. Keviczky Lászlóval és Dr. Bokor Józseffel közös projektek időszakára, ami megalapozta szakmai irányultságotam.

Keviczky professzor, akadémikus világszerte elismert és nagyra értékelt iskolát teremtett a sztochasztikus jelek vizsgálata, modellezése, a folyamatszabályozás, a diagnosztikai mérések és analízis területén. Én is ezen iskola követőjének vallom magam.

Bokor professzor, akadémikus barátom mély elméleti ismeretével és kivételes gyakorlati érzékével a gépállapot diagnosztika, az irányítás és a szabályozás területének egyik nemzetközileg is elismert vezető szakértője.

Szerencsésnek mondhatom magam, hogy éveken keresztül dolgozhattam együtt e két szaktekintélyel és munkatársaival gépélügyelő diagnosztikai rendszerek fejlesztésén. Mindkettőjüknek szeretnék köszönetet mondani szakmai fejlődéséért.

Mint annyi más könyv, ez sem született volna meg, ha csak a szerzőre van bízva. Hogy megjelenhetett, köszönettel illeti Dr. Szántó Jenő barátomat, a Dunaújvárosi Főiskola rektor-helyettesét, aki bíztatott, hogy mielőbb írjam meg ezt a könyvet, ami olyan gépállapot diagnosztikai ismereteket tekint át, ami az egyetemi, főiskolai oktatásban éppúgy használható, mint a gyakorlatban, a termelésben, a karbantartásban.

Pap Norbert barátom és munkatársam végigkísérte a könyv megírását, az elejétől egészen a nyomtatás előkészítéséig és aktívan közreműködött annak teljesítésében. Az ábrák döntő részét ô készítette el, ami nagyban hozzájárul a könyv mondaniivalójának megértetéséhez.

Plézer Mátyás komoly munkával segítette a könyv megjelenését a rajzok, ábrák szerkesztésével és a szakszerű, professzionális nyomdai előkészítéssel. A borító is tet-szetősre sikeredett.

Végül, de nem utolsósorban szeretnék köszönetet mondani feleségemnek, Zsuzsannának, aki bíztatott és türelmes volt aszerint, hogy éppen mire volt szükségem.

Hálával tartozom az olvasóimnak is azért, hogy drága idejüket áldozzák arra, hogy ezt a könyvet kezükbe fogják, olvasgatják. Remélem nem minden haszon nélkül.

A szerző
Előszó

Tisztelt Olvasóm! Ezt a könyvet három kötetesre tervezem.

Az első kötet a rezgésdiagnosztikával foglalkozik, ami a műszaki diagnosztika leginkább kiforrott nak mondható területe. Remélem, hogy elegendő mélységű információt tartalmaz ahhoz, hogy aki ezen a területen szeretne boldogulni, az kellőképpen fel legyen vértezve azokkal az ismeretekkel, melyek a mérések korrekt elvégzéséhez és a diagnózisok szakszerű felállításához szükségesek.

A második kötetben kollégáimmal a termográfiát, a forgógépek kiegyensúlyozását és tengely-beállítását, valamint az ExpertALERT rezgésdiagnosztikai szakértői rendszer működését tekintjük át.

A harmadik kötetben kerítünk soru az ultrahangos hibadetektálás, az olajanalízis, a ferrografía, a mozgásanimációs vizsgálatok, a gépvédelmi rendszerek és a reaktordiagnosztika tárgyalására.

Remélem, hogy jelen munkám elolvasása után szívesen veszik majd kézbe a kétszülő másik két könyvet is.

Jelenleg a Dunaújvárosi Főiskolán tanít és saját vállalkozását, a Delta-3N Kft-t irányítja.

A szerző nagy ipari tapasztalattal rendelkezik gépek állapotvizsgálata, és diagnosztikai rendszerek fejlesztése területén. A témában több képzésen is részt vett és oklevelét szerzett az Egyesült Államokban, és maga is rendszeresen oktat.

A szerző Dr. Nagy István arckép.
A gépek karbantartása, vagy ahogy napjainkban korszerűen nevezik az üzemfenntartás, mindig a termelés alapja volt és valószínűleg ez így is marad, amíg gépekkel termel az emberiség. Ennek ellenére úgy tekintenek rá, mint szükséges rosszra, ami növeli a költségeket, bizonyos időnként pedig még a termelést is le kell állítani miatta. Az a tapasztalatom, hogy a legtöbb ipari termelő vállalatnál a karbantartás rovására próbálják meg lefaragni a költségeket, így az üzemfenntartást a cégek egy kicsit mostoha gyerekként kezelik, pedig sok múlik rajta. Ha a karbantartás szót kiejtjük a szánkon, akkor egy rossz régi beidegződés révén a legtöbb ember szeme előtt egy olajos ruhás idősebb szaki jelenik meg. Ez a kép - habár erősen tartja magát - már egy kissé elavult. Napjaink karbantartójait valószínűleg jobban jellemzi az a szakember, aki több időt tölt a számítógépe előtt mérései eredményeket kiértékelve, karbantartási háló- és ütemterveket készítve, Interneten információk után kutatva, hálózaton adatbázisokban dolgozva, mint az általa felügyelt gépek mellett, melyek ráadásul nagy valószínűséggel tiszták, pedánsak.

Napjaink karbantartói ugyanis korszerű állapot-felügyelő és diagnosztikai módszereket használnak a karbantartandó gépek hibáinak feltárására és mérések alapján hoznak döntést arra vonatkozóan, hogy kell-e valamilyen beavatkozás az egyes gépeknel és ha igen, akkor konkrétan mit kell csinálni és milyen sürgösséggel. Karbantartó szakemberünk megteheti, hogy öltönyben és nyakkendőben dolgozzon, vagy legalábbis elegáns sportos ruhát viseljen munka közben.

Az ipari forradalom hőskora óta nagyon nagy változásra ment keresztül az ipari termelés gyakorlata és maga a karbantartás, vagy üzemfenntartás is. A korszerű karbantartási szervezetek munkájukat mérésekre alapozottan a gépek állapotának
függvényében szervezik meg, szolgáltatóként kielégítve a termelést irányító szervezetek igényeit. A mérésekhez igen korszerű műszereket, analizátorokat és feldolgozó szoftvereket használnak, nemegyszer még mesterséges intelligenciával működő szakértői rendszereket is.

A karbantartási programok egyik legfontosabb célja az idők során nem változott. Ez pedig a gépkiesések elkerülése. A váratlan gépkiesés - túl a termelés kiesése által okozott káron - olyan jelentős géphibát is okozhat, amelynek felszámolása nagy költségekkel lehetséges csupán. A gépmeghibásodások az anyagi károkon kívül az üzemeltetők egészségét és a környezetet is veszélyeztethetik attól függően, hogy a technológia milyen anyagokat használ és a sérülés milyen következményekkel jár.

A karbantartás második legfontosabb célja a gépek állapotának pontos ismeretével felmérni és pontosan tervezni a karbantartási és javítási munkákat, ezeknek a munkáknak a szükségleteit. Ez azt jelenti, hogy minimalizálni kell a raktárkészletet és a túlórákat. A termelő gépek és rendszerek javítását, karbantartását ideális esetben a tervezett üzemleállás ideje alatt kell elvégezni előre tervezetten, ütemtervek alapján.

A karbantartás harmadik legfontosabb célja, a gyár vagy üzem termelésének növelése a termelés alatti gépleállások valószínűségének jelentős csökkentése révén, és azáltal, hogy a kritikus gépek állásidejének csökkentésével a termelő rendszerek és gépek kapacitás-kihasználását a lehetséges legnagyobb értéken tartja.

A karbantartás céljai között van az is, hogy előre tervezhető és ésszerű munkaidő kihasználást biztosítson a karbantartó személyzet számára.

Egyik barátom, aki az amerikai hadsereg mellett szolgált polgári műszaki szakembereként, egyszer azt mondta, hogy az amerikai hadsereg azért sikeres, mert a gépei működőképesek, jól szervezett a karbantartása, amely gépbázisok diagnosztikai vizsgálati módszerekre támaszkodik.

Ennek fontossága szerintem fokozottan érvényes a polgári ipari termelő vállalatoknál. Azok a cégek sikeresek, azok képesek a termelést, a termelékenységet és a minőséget növelni megőrizve a biztonságot, nem károsítva a környezetet, amelyek jól szerveztek meg gépeik karbantartó-javító tevékenységét, és ehhez hasznáják a műszaki diagnosztika sokféle mérési és kiértékelési módszerét is.