Condition Based Maintenance Technical Diagnostics I.

Vibration Analysis

Dr. István Nagy Ph.D.

2007.

Technical Diagnistics ISBN 978-963-06-0806-0 I. Vibration Analysis ISBN 978-963-06-0816-9

Copyright © Delta-3N Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced, stored in retrieval system, or transmitted in any form without the written permission of the publishers.

Delta-3N Ltd.
7030 Paks, Jedlik A. str. 2.
http://www.delta3n.hu
Dr. Istvan Nagy Ph.D.
Phone.:+36 75 510115
Fax: +36 75 510114
Executive Director
<u>drnagyi@delta3n.hu</u>
Anna Polgar
Michael DeMaria
Mr. Matyas Plezer
Mr. Matyas Plezer
Pauker Press Ltd.

Table	of	contents

Pro	logue	9
Abo	out the author	.10
1.	Introduction	.11
2.	Maintenance strategies	.13
	Run-to-failure maintenance	.13
	Preventive maintenance	.13
	Predictive maintenance	.15
	Pro-active maintenance	.16
	Risk-based maintenance	.18
3.	Introduction to vibration	20
	What is the vibration	.20
	Basic terms	.21
	Vector representation of vibration	.28
4.	Mechanical vibration	.31
	Single degree of freedom harmonic vibration	.31
	Sum of harmonic vibrations, beats	.35
	Harmonic vibration with damping	.36
	Forced vibration without damping	.41
	Forced vibration with damping	.43
	Vibration of two- or more degrees of freedom	.46
	Free harmonic motion of two-degree-of-freedom mass-spring systems	.47
	Behavior of two connected pendulums	.51
	General description of free motion in case of two-degree-of-freedom	
	systems	.54
_	Harmonic motion with excitation of two-degrees-of-freedom systems	.55
5.	Basic terms of vibration analysis	.57
	Additivity of vibration, complex vibration	.57
	Scales of vibration, amplitude and frequency	.58
	Phase	.64
~	I me- and frequency domain, Fourier transformation	.66
6.	Measurement and analysis of vibration data	.67
	Sensors	.67
	Proximity probes	.67
	velocity transducers	.68
	Accelerometers	.69
	Analogue-algital conversion	.72

Te	chnical Diagnostics	István Nagy Ph.D.
	Aliasing	74
	Analyzers, spectrum analysis	76
	Spectrum of time-limited signals, windows	87
	Leakage	90
	Picket fence effect	91
	Windowing	93
	Triangle (Bartlet) window	95
	Hann-window, or Hanning-window	95
	Hamming-window	
	Blackman-window	
	Averaging	
	Overlap processing	
7.	Some methods of vibration analysis	104
	Time domain analysis	104
	Machine shaft motion: Orbits	104
	Relationship between orbits and spectra	
	Time-synchronous sampling and averaging	
	Crest Factor	
	Analysis of forced vibration	109
	Analysis of natural-frequency vibration, resonance	110
	Power density spectrum	114
	Cepstrum analysis	114
	Demodulated spectrum	118
	Amplitude modulation in machine diagnostics	119
	Root Cause Failure Analysis (RCFA)	
	Phase measurements	124
	Measuring machine vibration level, standard specifications	
	White's rules of thumb of frequency analysis	
8.	Dynamic analysis of systems, structures	130
	Parseval's theorem	130
	Autocorrelation function	
	Weiner-Hincsin theorem	132
	System analysis	132
	Impulse response and transfer function	
	Power transfer function	134
	Cross correlation and cross power density functions	134
	Coherence	136
	Linear and non-linear systems	136
	Dynamic analysis of structures	138
	ODS (Operating Deflection Shape)	139
	Basics of modal analysis	140
	Mobility measurements	142
	Experimental modal analysis	147

Table of contents

9.	Machine vibration analysis in practice	155
	Test point location	156
	One-direction and triaxial sensors	157
	Sensor orientation	157
	Test conditions	158
	Vibration monitoring	159
	Period of measurement cycles	160
	Comparison of spectra, normalization	161
	Reference spectrum	162
	Spectrum mask	163
	Trend-analysis	164
	Forcing frequencies	165
	Evaluation of vibration spectra	167
	Machine data necessary for vibration analysis	167
	Validity of data	168
	Steps of spectrum analysis	170
10.	Machine diagnosis	172
	Mechanical faults	173
	Imbalance	173
	Static imbalance	174
	Dynamic imbalance	175
	Coupled imbalance	176
	Imbalance of overhung rotors	176
	Imbalance of vertical machines	177
	Eccentric rotor	178
	Misalignment	178
	Parallel misalignment	179
	Angular misalignment	180
	General misalignment	181
	Temperature effects on misalignment	182
	Rent shaft	182
	Differentiating between misalignment and bent shaft	183
	Cocked bearing	183
	Problems of counting	185
	Machine diagnosis of journal bearings	186
	Oil whirl and oil whin in journal bearings	188
		180
	Insufficient lubrication and friction in journal bearings	103
	Thrust bearing wear	102
	Misalianment of machines with journal bearings	102
	Polling-olomont boaring faulte	10/
	Wear and looseness of rolling element bearing	194 202
	יזיכמו מווע וטטטבוובטט טו וטווווע בובווופווג שפמוווע	20Z

Mechanical looseness	. 202
Looseness of rotor inner clamping	. 203
Structural looseness	. 204
Thrust bearing looseness	. 205
Phenomena of resonance	. 205
Machine resonance issues	. 206
External excitation	. 207
Crack or fracture of rotor shaft	.218
Electric faults	.211
AC motors	. 211
Faulted iron core	. 213
Loose current collectors, phase-problem	.213
Thermal distortion (warping) of the rotor	. 214
Air-gap eccentricity and loose rotor	. 214
Loose rotor bars	. 215
Bent or broken rotor bars	.216
Rotor-bar monitoring by motor-current analysis	.217
Eccentric rotor	. 218
Eccentric or ovoid stator	.218
Stator coil-number frequency	. 219
Loose stator windings	. 220
Motor loose foot (foundation)	. 220
Analysis of DC motors	. 221
Flow-induced vibration	. 222
Analysis of centrifugal pumps and fans	. 222
Cavitation in centrifugal pumps	. 224
Streaming turbulence	. 225
Turbine diagnostics	. 227
Diagnostics of gear pumps	. 228
Monitoring screw pumps	. 228
Axial Flow Fans	. 228
Centrifugal fans	. 229
Centrifugal compressors	. 229
Diagnostics of belt- and chain-driven machines	. 230
Mismatched, worn or stretched belt/chain	. 230
Eccentric sheave and sheave run-out	. 231
Belt/chain misalignment	. 232
Belt/chain resonance, or belt slap	. 233
Gearbox vibration monitoring	. 234
Gear mesh	. 234
Gear wear	. 235
Gear overload	. 236
Gear-tooth clearance (extreme backlash)	. 237

Table of contents

Damaged, cracked or broken tooth	23
Eccentric gear or bent gear shaft	23
Hunting tooth gear sets	23
Gears with shaft misalignment	24
Planetary gears	24
Gear ghost frequency	24
Tooth numbers with common divisor	24
Vibration analysis of reciprocating machines	24
Reciprocating compressors, combustion engines and diesel motors	24
11. Index	24
12. Bibliography	24

Acknowledgements

I really appreciate the opportunity of mutual projects carried out together with academicians Laszlo Keviczky and Jozsef Bokor, which determined my professional orientation.

Academician professor Keviczky established a globally acknowledged and highly valued school in the field of stochastic signal analzsis, modeling, process control, diagnostics and analysis. I consider myself a follower of that school.

My friend, academician professor Bokor, with his comprehensive theoretical knowledge and unique practical approach, is an internationally acknowledged expert of machine diagnostics, control and regulation.

I consider myself lucky for having the chance to work together with the abovementioned two experts and their colleagues for years regarding the development of machine diagnostic monitoring systems. I would like to thank them both for supporting my professional development.

Just like in case of many other books, this book would have never been accomplished, if it had depended only on the author.

I am very thankful to my friend Dr. Jenő Szántó, vice-director of the College of Dunaujvaros, who encouraged me to finish this book, which overviews machinery diagnostics useful not only in case of university or college education, but also in actual industrial practice of production and maintenance.

A colleague and friend of mine, Mr. Norbert Pap followed closely the writing of this book from the beginning to its printing preparation, and he actively participated in its accomplishment. He prepared the majority of illustrations, which greatly contributed to the plainness of the book. I am thankful of two my colleagues, Laszlo Csete and Zsolt Maksa for their help to prepare typescript to press.

Special thanks for Anna Polgar for the excellent translation.

I am appreciating to Michael DeMaria, diagnostic expert from DLI Engineering Corp. for the valuable consultations and the publisher's reading the book.

Mr. Mátyás Plézer helped the publication of this book by editing drawings and illustrations and professional copy-editing. The cover of the book is also quite aesthetic.

And last but not least, I would like to thank my wife Zsuzsanna for her patience and encouragement, always providing me with the necessary help.

I wish to thank the readers of this book for devoting their precious time to hold and read this book. I hope it would be useful for all of them.

The author

Prologue

My dear readers, my original intention was to accomplish a three-volume book.

The subject of the first volume is vibration analysis, which is the most advanced field of technical diagnostics. I hope it provides enough information for those who would like to apply that technology and obtain all the knowledge necessary in order to carry out measurements and analyses properly.

In volume two, together with my colleagues, we shall overview subjects such as thermography, balancing rotary machines, shaft alignments, as well as the use of the ExpertALERT vibration analysis expert system.

In volume three we shall overview ultrasonic fault detection, oil analysis, ferrography, animation of operating deflection shapes, as well as machine protection systems and noise diagnostics of nuclear reactors.

I hope that, after reading this book, you would be willing to read the following two volumes, currently under preparation.

About the author

Dr. Nagy Itván arckép. Author István Nagy Ph.D., nuclear engineer-physicist obtained his Master Degree in the faculty of Nuclear Power plants and Experimental Equipment, in the Moscow Energetic Technical University, in 1977. He obtained degree of candidate in technical sciences in Moscow in 1988, based on his achievements in the field of nuclear reactor diagnostics. He gained his university doctor title at the Technical University of Budapest and his academic candidate degree was nostrificated by the Hungarian Academy of Science in 1990.

He worked at the Central Research Institute of Physics of the Hungarian Academy of Science, where he was preparing for the tasks to be fulfilled as physicist of the first domestic nuclear power plant. In the Nuclear Power Plant of Paks he had different responsibilities, such as reactor physicist, senior physicist, and later on head of reactor-diagnostics department. He participated in the establishment project of the Nuclear Power Plant helping the Plant's Commissioner and also in the actual commissioning procedure afterwards. Later on, he established the branch office of Company OLAJTERV in city Paks, and for a period, he was the head of this division. He worked as a senior research fellow at MTA SZTAKI (Computer and Automation Research Institute of the Hungarian Academy of Sciences) as well.

He currently is a professor at the College of Dunaujvaros and managing his family owned company, Delta-3N Ltd.

The main activity of Delta-3N Ltd. (<u>www.delta3n.hu</u>) is machinery diagnostics, especially vibration analysis of rotating machines, which is facilitated by the highperformance unique ExpertALERT expert system, developed by DLI Engineering Corp. (<u>www.dliengineering.com</u>) based on the requirements of the US NAVY. In addition, the company has other profiles like balancing rotating machines, laser shaft-alignment, thermography, ferrography, ultrasonic leakage and fault detection. Besides services of machinery diagnostics, the company is also involved in the development of protective and diagnostic systems for machinery, trade of tools and equipment, as well as teaching diagnostics. Outstanding customers of the company are Hungarian Oil and Gas Company Plc. "MOL Nyrt.", as well as the Hungarian Nuclear Power Plant Paks and the chemical plant Nitrogenworks Plc.

The author has great industrial experience in machine diagnostics and development of diagnostic systems. He has participated in several trainings in the United States, obtaining certificates, and he himself teaches on a regular basis.

1. Introduction

Machinery maintenance or, as it is sophisticatedly called nowadays, routine maintenance, was and most probably will remain substantial as long as people use machines for production. In spite of that, I consider it a necessary bad thing, increasing costs and sometimes even hindering production. According to my experience, most industrial manufacturers try to decrease costs at the expense of maintenance and servicing is treated a little bit like a "stepchild", while actually a lot depends on it. When the word "maintenance" is mentioned, people imagine an old guy dressed in filthy clothing. This image, although it still remains strong, is a bit old-fashioned. The maintenance guy in our days is more likely to be an expert, who spends more time analyzing computer data of tests, making maintenance schedules and network plans, searching for information on the Internet, working in databases throughout networks, rather than standing next to the supervised machines, which are most probably clean and meticulously stainless.

Namely, maintenance engineers use modern condition-monitoring and diagnostic methods in order to reveal machine faults, and based on these measurements, they make decisions whether or not intervention is necessary in case of a certain machine, and if so, what exactly shall be done and how urgently. Our maintenance expert could easily work in a suit and tie, or at least wear an elegant, nice sportswear during work.

Since the industrial revolution, industrial production underwent several huge changes, and so did maintenance and servicing. Modern maintenance organizations schedule work according to the actual condition of machinery, based on

measurements, accomplishing the needs of production management organizations as service providers. They use high-tech measuring equipment, analyzers and data processing software, and often even expert systems, including artificial intelligence.

However, the most important task of maintenance programs, which is avoiding equipment breakdown, has not changed over the years. Unexpected breakdown of a machine – apart from the loss of production – could cause severe problems to the machine, the repair of which could be very expensive. Besides material damages, breakdowns can endanger the health of operators and the environment, depending on the technology and materials used, as well as the consequences of the accident.

The second most important task of servicing is to plan and know precisely the needs of all maintenance and repair work, by following closely the condition of the machines. This means that overtime and stock must be minimized. Repair and maintenance of production machines and systems should be carried out during the downtime of pre-scheduled preventive maintenance, based on a time plan, prepared in advance.

The third most important purpose of maintenance is to increase productivity of a factory or plant by decreasing the overall likelihood of downtime during production, especially the downtime of critical machines, keeping the capacity and power level of systems and machines at the highest value possible.

It is also an objective to ensure a more rational and pre-planned utilization of worktime for personnel.

One of my friends, who used to work as a civilian technical expert in the American Army, once said that the reason why the US Army is so successful is that it has operational machines with well-organized maintenance based on evaluation methods of machine diagnostics.

The importance of this is even more significant in case of civilian industrial production companies. Only those companies are successful and capable of improving productivity, performance and quality, as well as ensuring safety and keeping the environment, which organize their maintenance and repair activities well, and use for that purpose several methods of advanced diagnostics of measuring and analysis.